Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721633

RESUMEN

The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-ß (PDGFR-ß) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-ß is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-ß in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-ß on H-type vessels is mediated through the PDGFRß-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-ß facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-ß emerges as a promising therapeutic approach for the management of OP in the near future.

2.
Int Immunopharmacol ; 119: 110153, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37071966

RESUMEN

Currently, there is no effective therapy for Staphylococcus aureus-induced osteomyelitis. It is widely recognized that the inflammatory microenvironment around abscess plays an essential role in protracting the course of S. aureus-induced osteomyelitis. In this study, we found TWIST1 was highly expressed in macrophages around abscesses but less related to local S. aureus in the later stages of Staphylococcus aureus-infected osteomyelitis. Mouse bone marrow macrophages show apoptosis and elevated TWIST1 expression when treated with the inflammatory medium. Knockdown of TWIST1 induced macrophage apoptosis, impaired the bacteria phagocytosis/killing abilities, and promoted cell apoptosis markers expression in inflammatory microenvironment stimulation. Furthermore, inflammatory microenvironments were responsible for inducing calcium overload in macrophage mitochondrial while calcium overload inhibition significantly rescued macrophage apoptosis, bacteria phagocytosis/killing abilities and improved the mice's antimicrobial ability. Our findings indicated that TWIST1 is a crucial molecule that protects macrophages from calcium overload induced by inflammatory microenvironments.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Calcio , Osteomielitis/metabolismo , Osteomielitis/microbiología , Infecciones Estafilocócicas/metabolismo , Apoptosis , Bacterias
3.
Mol Ther ; 31(1): 174-192, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36104974

RESUMEN

There is no effective therapy for implant-associated Staphylococcus aureus osteomyelitis, a devastating complication after orthopedic surgery. An immune-suppressive profile with up-regulated programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) was identified based on our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis. PD-1/PD-L1 expression was up-regulated mainly in F4/80+ macrophages surrounding the abscess in S. aureus-infected bone. Mechanistically, PD-1/PD-L1 activated mitophagy to suppress production of mitochondrial reactive oxygen species (ROS), suppressing the bactericidal function of macrophages. Using neutralizing antibodies for PD-L1 or PD-1, or knockout of PD-L1 adjuvant to gentamicin markedly reduced mitophagy in bone marrow F4/80+ cells, enhanced bacterial clearance in bone tissue and implants, and reduced bone destruction in mice. PD-1/PD-L1 expression was also increased in the bone marrow from individuals with S. aureus osteomyelitis. These findings uncover a so far unknown function of PD-1/PD-L1-mediated mitophagy in suppressing the bactericidal function of bone marrow macrophages.


Asunto(s)
Anticuerpos , Antígeno B7-H1 , Osteomielitis , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Adyuvantes Inmunológicos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Osteomielitis/metabolismo , Osteomielitis/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Staphylococcus aureus , Modelos Animales de Enfermedad , Anticuerpos/uso terapéutico
5.
Food Chem Toxicol ; 145: 111689, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32810588

RESUMEN

α-hemolysin (Hla) is considered an essential virulent factor for Staphylococcus aureus (S. aureus) toxicity, the mechanism by which Hla affect bone metabolism is poorly understood. In this study, 2-month-old C57BL/6 mice were treated with Hla (40 µg/kg, i.p.) or S. aureus (1 × 106 CFU/ml, 100 µl, i.v.) with the presence or absence of methyl-ß-cyclodextrin (MßCD) (300 mg/kg, i.p.). MicroCT analysis showed progressive bone loss from week 2 to week 4 after Hla treatment, accompanied by a decreased osteoblasts and increased osteoclasts in femoral metaphysis in mice. Further, Hla stimulated the expression of Caveolin-1 in vivo and in vitro, activated lipid rafts accumulation in cell membrane of bone marrow stromal cells (BMSCs), and suppressed osteogenesis of BMSCs. Destruction of lipid rafts with MßCD or inhibition of Caveolin-1 with Daidzein blocked the detrimental effect of Hla on osteogenesis of BMSCs. Importantly, treating mice with MßCD rescued the loss of osteoblasts and increased osteoclastogenesis induced by Hla as well as the bone loss induced by S. aureus infection. Together, we demonstrate that Hla induces bone destruction directly by suppressing osteogenesis and indirectly by stimulating osteoclastogenesis, and that lipid rafts may mediate the detrimental effect of Hla and S. aureus on osteogenesis and bone formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células de la Médula Ósea/citología , Proteínas Hemolisinas/metabolismo , Microdominios de Membrana/metabolismo , Osteogénesis , Infecciones Estafilocócicas/fisiopatología , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Regulación hacia Abajo , Proteínas Hemolisinas/genética , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
6.
Front Microbiol ; 11: 1301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595631

RESUMEN

Staphylococcus aureus (S. aureus) infection-induced osteomyelitis is a great challenge in clinic treatment. Identification of the essential genes and biological processes that are specifically changed in mononuclear cells at an early stage of S. aureus osteomyelitis is of great clinical significance. Based on transcriptional dataset GSE16129 available publicly, a bioinformatic analysis was performed to identify the differentially expressed genes of osteomyelitis caused by S. aureus infection. ERBB2, TWIST1, and NANOG were screened out as the most valuable osteomyelitis-related genes (OMRGs). A mice model of implant-associated S. aureus osteomyelitis was used to verify the above genes. We found significantly up-regulated expression of TWIST1 in macrophages and accumulation of macrophages around the infected implant. Meanwhile, S. aureus infection increased the expression of TWIST1, MMP9, and MMP13, and stimulated the migration and phagocytosis function of Raw 264.7 cells. Additionally, knock-down of the expression of TWIST1 by siRNA could significantly down-regulate MMP9 and MMP13 and suppress the migration and phagocytosis ability of macrophages in response to S. aureus infection. Furthermore, we found that NF-κB signaling was activated in Raw 264.7 cells by S. aureus and that inhibition of NF-κB signaling by Bay11-7082 blocked the expression of TWIST1, MMP9, and MMP13 as well as cell migration and phagocytosis evoked by S. aureus. Our findings demonstrate that NF-κB/TWIST1 is necessary for migration and phagocytosis of macrophages in response to S. aureus infection. Our study highlights the essential role of NF-κB/TWIST1 in early innate immune response to S. aureus infection in bone.

7.
J Cell Physiol ; 235(11): 8653-8666, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324278

RESUMEN

Osteoarthritis (OA), a disease of the entire joint, is characterized by abnormal bone remodeling and coalescent degradation of articular cartilage. We have previously found that elevated levels of H-type vessels in subchondral bone correlate with OA and that focal adhesion kinase (FAK) is critical for H-type vessel formation in osteoporosis. However, the potential role of FAK in OA remains unexplored. Here, we demonstrate that the p-FAK level was dramatically elevated in subchondral bone following anterior cruciate ligament transection (ACLT) in rats. Specific inhibition of FAK signaling with Y15 in subchondral bone resulted in the suppression of subchondral bone deterioration and this effect was mediated by H-type vessel-induced ectopic bone formation. Further, articular cartilage degeneration was also alleviated after Y15 treatment. In vitro, the p-FAK level was significantly elevated in mesenchymal stem cells (MSCs) from vehicle-treated ACLT rats as compared to that in MSCs from sham controls and Y15-treated ACLT rats. Elevated p-FAK level in MSCs promoted vascular endothelial growth factor (VEGF) expression, as demonstrated from the high VEGF level in the blood, subchondral bone, and conditioned medium (CM) of MSCs from vehicle-treated ACLT rats. The CM of MSCs from vehicle-treated ACLT rats might promote the angiogenesis of endothelial cells and the catabolic response of chondrocytes through the FAK-growth factor receptor-bound protein 2-mitogen-activated protein kinase-mediated expression of VEGF. The effect of the CM from MSCs of Y15-treated ACLT rats or that treated with a VEGF-neutralizing antibody on vessel formation and the catabolic response was lowered. Thus, the specific inhibition of FAK signaling may be a promising avenue for the prevention or early treatment of OA.


Asunto(s)
Cartílago Articular/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Osteoartritis/tratamiento farmacológico , Alendronato/farmacología , Animales , Ligamento Cruzado Anterior/patología , Remodelación Ósea/efectos de los fármacos , Remodelación Ósea/fisiología , Huesos/patología , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Masculino , Osteoartritis/patología , Ratas Sprague-Dawley
8.
Front Cell Dev Biol ; 8: 601188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384997

RESUMEN

Antenatal corticosteroid therapy (ACT) has been shown to reduce morbidity and mortality rates in preterm delivery, but the fetus is more likely to face the risk of low bone mineralization and low fetal linear growth. However, the mechanism of ACT inducing low bone mineralization remains largely unknown. Pre-osteoclasts, which play an important role in angiogenesis and osteogenesis, are specifically regulating type H vessels (CD31hiEmcnhi) and vessel formation by secreting platelet-derived growth factor-BB (PDGF-BB). We find that the number of pre-osteoclasts and POC-secreted PDGF-BB is dramatically decreased in ACT mice, contributing to the reduction in type H vessels and bone mineralization during the mouse offspring. Quantitative analyses of micro-computed tomography show that the ACT mice have a significant reduction in the mass of trabecular bone relative to the control group. Mononuclear pre-osteoclasts in trabecular bone decreased in ACT mice, which leads to the amount of PDGF-BB reduced and attenuates type H vessel formation. After sorting the Rank+ osteoclast precursors using flow cytometry, we show that the enhancer of zeste homolog 2 (Ezh2) expression is decreased in Rank+ osteoclast precursors in ACT mice. Consistent with the flow data, by using small molecule Ezh2 inhibitor GSK126, we prove that Ezh2 is required for osteoclast differentiation. Downregulating the expression of Ezh2 in osteoclast precursors would reduce PDGF-BB production. Conditioned medium from osteoclast precursor cultures treated with GSK126 inhibited endothelial tube formation, whereas conditioned medium from vehicle group stimulated endothelial tube formation. These results indicate Ezh2 expression of osteoclast precursors is suppressed after ACT, which reduced the pre-osteoclast number and PDGF-BB secretion, thus inhibiting type H vessel formation and ACT-associated low bone mineralization.

9.
Bone ; 125: 140-150, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108241

RESUMEN

Crosstalk between subchondral bone and articular cartilage is considered a central feature of osteoarthritis (OA) initiation and progression, but its underlying molecular mechanism remains elusive. Meanwhile, specific administration of drugs in subchondral bone is also a great challenge during investigation of the process. We here explore the role of stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis in the crosstalk between subchondral bone and articular cartilage in OA pathogenesis, using osmotic infusion pumps implanted in tibial subchondral bone directly to ensure quantitative, continuous and steady drug delivery over the entire experiment. We found that increased SDF-1 in subchondral bone firstly induced subchondral bone deterioration by erroneous Mesenchymal Stem Cells (MSCs) recruitment and excessive bone resorption in anterior cruciate ligament transection (ACLT) mice. Deterioration of subchondral bone then led to the traverse of SDF-1 from subchondral bone to overlying cartilage. Finally, SDF-1 from underlying subchondral bone combined with CXCR4 in chondrocytes to induce articular cartilage degradation by promoting the shift of transforming growth factor-ß receptor type I (TßRI) in chondrocytes from activin receptor-like kinase 5 (ALK5) to activin receptor-like kinase 1 (ALK1). More importantly, specific inhibition of SDF-1/CXCR4 axis in ACLT rats attenuated OA by stabilizing subchondral bone microarchitecture, reducing SDF-1 in cartilage and abrogating the shift of TßRI in chondrocytes. Our data demonstrate that the SDF-1/CXCR4 axis may coordinate the crosstalk between subchondral bone and articular cartilage in OA pathogenesis. Therefore, specific inhibition of SDF-1/CXCR4 axis in subchondral bone or intervention in SDF-1 traverse may be therapeutic targets for OA.


Asunto(s)
Cartílago Articular/citología , Cartílago Articular/metabolismo , Quimiocina CXCL12/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Receptores CXCR4/metabolismo , Animales , Western Blotting , Cartílago Articular/patología , Quimiocina CXCL12/genética , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/genética
10.
J Cell Physiol ; 234(10): 18017-18028, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30825206

RESUMEN

Clinical studies have indicated that increased serum cholesterol levels raised the risk of tendinopathy in hypercholesterolemia, but the effect of cholesterol on tendon-derived stem cells (TDSCs) and its underlying mechanism have not been studied. The purpose of this study is to investigate the association between cholesterol and tendinopathy in vitro and in vivo, and its underlying molecular mechanism as well. In TDSCs, the effect of cholesterol was assessed by quantitative polymerase chain reaction, western blot analysis, and immunofluorescence staining. Intracellular levels of reactive oxygen species (ROS) was detected, using flow cytometry. The link between nuclear factor (NF)-κB signaling and the effect of cholesterol was evaluated using a representative IκB kinase (IKK) inhibitor, BAY 11-7082. In addition, Achilles tendons from apolipoprotein E mice fed with a high-fat diet were histologically assessed using hematoxylin and eosin staining and immunohistochemistry. We found that high cholesterol apparently lowered the expression of tendon cell markers (collagen 1, scleraxis, tenomodulin), and elevated ROS levels via the NF-κB pathway both in vitro and in vivo. The ROS scavenger N-acetylcysteine (NAC) and BAY 11-7082 reversed the inhibiting effect of cholesterol on the tendon-related gene expressions of TDSCs. Moreover, NAC blocked cholesterol-induced phosphorylation of IκBα and p65. Significant histological alternation in vivo was shown in Achilles tendon in the hypercholesterolemic group. These results indicated that high cholesterol may inhibit the tendon-related gene expressions in TDSCs via ROS-activated NF-кB signaling, implying pathogenesis of tendinopathy in hypercholesterolemia and suggesting a new mechanism underlying hypercholesterolemia-induced tendinopathy.


Asunto(s)
Tendón Calcáneo/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Tendinopatía/metabolismo , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/patología , Animales , Antioxidantes/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Masculino , Ratones Noqueados para ApoE , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/patología , Tendinopatía/genética , Tendinopatía/patología , Tendinopatía/prevención & control
11.
Gene ; 580(2): 89-95, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26802971

RESUMEN

Transcriptional gene silencing (TGS) induced by synthetic exogenous short interfering RNAs (siRNAs) that are fully complementary to gene promoters has been demonstrated in mammalian cells. However, it remains unclear whether microRNAs (miRNAs), which are endogenous small regulatory RNAs, can also silence gene transcription. We investigated the regulation mechanism of let-7d on dopamine D3 receptor (DRD3) in immortalized renal proximal tubule (RPT) cells of rats, where let-7d has a predicted homologous target site within DRD3 promoter. We found that let-7d mimics repressed DRD3 expression at the transcription level in RPT cells. Let-7d induced DRD3 inhibition via DNA-methyltransferase 1 (DNMT1) and DNA-methyltransferase 3b (DNMT3b) dependent DNA methylation and the inhibition could be abolished by 5'-aza-2'-deoxycytidine (5-aza-dc), a DNA methylation inhibitor. Let-7d induced DRD3 repression was associated with the recruitment of Argonaute 2 (AGO2) protein. Histone 3 lysine 9 dimethylation (H3K9me2) was involved in the let-7d induced DRD3 TGS, indicating the chromatin-level silencing. In conclusion, our results demonstrated that let-7d may induce DRD3 repression in a transcriptional manner by means of DNMTs dependent DNA methylation and histone modification. It is suggested that miRNAs may act as a transcriptional gene regulator via the recognition of the homologous target site within the gene promoter.


Asunto(s)
Túbulos Renales Proximales/metabolismo , MicroARNs/farmacología , Interferencia de ARN/efectos de los fármacos , Receptores de Dopamina D3/genética , Animales , Secuencia de Bases , Línea Celular Transformada , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , MicroARNs/química , Imitación Molecular , Ratas , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...